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By
W. H. Heybey
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ABSTRACT

Light falling on an engineering surface will be reflected partly
in a preferred direction (specularly), partly in a diffuse manner. The
scattering of the light energy is assumed to follow Lambert's cosine
rule, The force differential acting on an elemental surface is set up
for such cases of mixed reflection. A smoothness coefficient (= 1)
accounts for that portion of the reflected energy that is radiated
specularly. A loss coefficient,also = 1, gives the fraction of the
incident energy that enters into the reflected light,

Applications are made to the sphere and its motion under the impact

of light, and to the circular cone with fully illuminated curved surface,
some results being added when a shadow region exists on it.
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TECHNICAL MEMORANDUM X-53617

ON MIXED REFLECTION OF SUNLIGHT

SUMMARY

If an elemental surface is exposed to sunlight the total light force
on it is the compound effect of three intensities of which that of inci-
dent light can be taken as the basic measure. Only a portion of it will
be reflected (described by a loss coefficient, k). This portion in turn
will usually be radiated back in part specularly, in part diffusely. A
smoothness coefficient, q, identifies the fraction of it that follows the
familiar mirror reflection law. Lambert's cosine rule is assumed for the
energy flux distribution in diffusion. On this basis an expression for
the differential of the light force is derived which must be integrated
over the illuminated part of the surface. This is more or less easily
done if the surface equation is known in analytic terms and if the loss
and smoothness coefficients can be taken as constants.

An application to the sphere shows that, unless diffuse reflection
is present, the force on it is that of incidence alone no matter what
portion of the energy is reradiated specularly. A non-homogeneous sphere
will, aside from following a straight translation course, in general
carry out a swinging motion about an axis through the mass center, except
in singular circumstances when the initial torque is zero so that a
rotatory motion cannot develop.

The force on a fully illuminated circular cone can be larger or
smaller than the incident force alone, depending mainly on whether the
opening angle of the cone is large or small. The force moment will
tend to align a homogeneous cone's axis with the light direction, pro-
vided that the product gk is smaller than 0.6. If it is larger, suf-
ficiently slender cones are unstable. (The Apollo capsule is likely to
be stable if the conical part is fully illuminated.)

A numerical computation was carried out for loss-free reflection
(K = 1), full illumination, and the opening angle of the Apollo capsule.
If the axis inclination towards light direction is increased, the force's
inclination increases also, and does so at a faster pace with smoother
surfaces. With these, it also becomes larger in magnitude. At a fixed
attitude, the force depends on the surface quality, growing stronger
and less inclined as diffusion grows more preponderant,

In a concluding section approaches other than Lambert's rule to
account for diffuse reflection are briefly- discussed.



I, INTRODUCTION

The energy of reflected light is smaller as a rule than that of the
incoming light. Part of the latter may go into different forms (heat;
electrical energy), another part may be transmitted through a trans-
parent surface, All losses of radiant energy will be consolidated into
one fractional loss coefficient, K, so that

I, =KI; (1)

is the fraction of the incident intensity that is preserved in the
reflected light (0 £ Kk = 1),

Except in ideal circumstances the surface is rough relative to
photon size. Experience shows that a portion only of the reflected
energy resides in light reemitted specularly, that is, in such a manner
that the surface normal bisects the angle between the directions of
incoming and reflected rays, A smoothness coefficient q(0 = q = 1) will
be used to describe the intemsity, Ig, of light reflected specularly:

I =ql_. (2)

With q = 1, the reflection is ideal; with q = 0, it is diffuse in its
entirety. Neither of these limiting values will presumably be found
with engineering surfaces.

Diffuse reflection is usually taken as obeying Lambert's rule
(which, by the way, stems from 1760). The total solid angle (Q = 2x)
above an elemental surface is divided into elements d{} surrounding the
surface normal, If one of these elemental solid angles makes the angle 9
with the surface normal, the flux of the light energy in it is assumed
proportional to cos J. It may be written as

d3g = (A cos 9§ d) dS

where dS is the area of the surface element and A is a factor of propor-
tionality. For the integration one best uses the system of spherical
coordinates ¢, 9, r as depicted in figure 1. 1In it

dQ = sin 9 d9 do,




Figure 1, Spherical Coordinates

so that the total flux given out by the element dS becomes

25 2
g_ = MS J sin 9 cos § d9 do = wAdS. (3)
¢=0 =0

Note that it is proportional to dS.

In being reemitted light moves in the general direction (figure 1)

*
e =41isin § cos ¢+ j sin § sin ¢ + k cos 3J;

%*
Vectors are denoted by underlined symbols. For example, i, j, k are
the unit vectors in the x,y,z-directions, respectively.



it exerts a force whose direction is opposite to e and whose magnitude
is given by

1l .2
S 47,

where ¢ is the speed of light. The total force acting through diffuse
reemission on the element dS becomes

2w/ 2
£q= - %3ds Jf JF sin 9 cos § dd dp (i sin § cos ¢ + j sin 9 sin @
=0 §=0
+ k cos 9).

On integrating over ¢ the i- and j-components cancel. Thus,

7/ 2
- _ 21 . 2 - _ 2xA
£, 7% Edesm-.Scosed'a Ia k ds.
9=0

The "diffusion" force is in the direction, -k, of the interior normal of
the surface element, 1Its absolute value,

27\
3 ds,

can be connected with an energy flux normal to dS of magnitude

¢ =mds=

a3 g

win

t’

according to expression (3). On dividing through by dS one obtains an
intensity related to ﬁd:

_2 =2
Ig=3I=3 Q-9 I. (%)




The unknown factor A is eliminated in this expression. Note that while
in fact the entire fraction Iy = (1 - q) I, of the reflected intensity
is emitted diffusely, only part of it contributes to the accelerating
force on dS, since the lateral force components cancel (and thus may be
said to merely produce stresses in the surface element)., This is con-
sequent on the assumption made in the derivation that Lambert's intens-
ities give rise to actual forces attacking the element in the directions
-e.

II, THE LIGHT FORCE ACTING ON DIFFERENTTAL AND INTEGRAL SURFACES

The intensity of parallel (sunlight) radiation is numerically iden-
tical with the pressure of light on a surface placed normal to ray direc-

tion, For such surfaces, expressions (1), (2), and (4) may also be written

as
N
pr B KPO
Py = Ka p_ > (3)
Pg = % K(1 - q) p_.
/

The pressure, Po> of the incident light must be taken from observation.
In nearby space its value is very small:

_ -4 dyne
P, = 0.4583 x 107" £, (6)

This figure is an average, for in fact, it varies slightly with the
earth's distance from the sun,

An element, dS, sitting on an extended surface will not in general
be perpendicular to ray direction. If its normal makes the local angle,
d, of incidence with that direction, the magnitude of the force on it
is calculated as the product of the pressure with the projected area,
dS cos . With incident parallel light the direction of the force is
that of the rays which we may designate by the unit vector s. Thus, the
force element engendered by the light incoming at dS is given by

dzgi = p, dS cos a s3 )




that is, the force is largest at normal incidence (& = 0), It is zero
with grazing incidence (¢ = 90°). This is not strictly correct with
rough surfaces where a few peaks will still be illuminated. However,
their projected area is small at least of 'second order. The effect
can be disregarded (here as well as with o # 90°°

With specular reflection, the force is in a direction, s', opposite
to that of the outgoing light and again makes the angle ¢ with the
interior normal unit vector n'. Since s and s' are also unit vectors,
the diagonal's length in figure 2 is 2 cos . It follows that

s' = 2n cos @ - s.

Reflected

Incoming

r-2a

Figure 2. The Direction s'

Finally, the pressure in the outgoing light being pg, the elemental
force produced by it becomes

2 = -
d _ES 9K p, cos O dS (2n cos @ - 8). (3)

Earlier it was found that, with diffuse reflection, the force points
into the direction of the interior normal (o = 0°). The third relation
(5) then yields

2
dzgd =3 k(1 - q) P, dS n . (9




Expressions (7), (8), (9) add up to give the total force acting on
the surface element:

dZ_E = podS [g(l ~ gK) cos o+ 2n K <14;- +q coszoz>:| . (10)

This formula simplifies considerably in the limiting cases of no reflec-
tion at all (k = 0) and of ideal specular reflection (K = q = 1), less
so in the case of purely diffuse reflection (q = 0). It will be noticed
that even with grazing incidence (cos o = 0), there is still a non-
vanishing force, It is entirely produced by Lambert reflection, dimin-
ishes with it and disappears in the ideal case q = 1. One may argue
that with strongly oblique incidence diffuse reflection is not likely
to follow the rotational symmetry of the cosine law. This possible
defect, however, would seem to carry weight with plane surfaces only
where such incidence will extend over finite areas,

For application of the differential (10) the surface in question
is best given a pointwise representation:

x = x(0,7), Yy =y(5,7), z=2z(d,1). (11)

The intervals in which the parameters ¢ and T move are determined by
the geometrical shape of the surface., On it, the curves o = const,
T = const. are coordinate lines (not necessarily orthogonal to each
other). If the surface is composite, several of such sets (11) will
have to be used.

Once expressions (11) are known the components in the (x,y,z)~-system
of the surface normal at any point (0,T) are determinable:

Yo 2 z. X X~ Y
1 o “o 1 0“0 1 g Jo
= Ry 2t P2 T EN o xt PPT RN [k 2 12)
Yt 27 T X¢ T 27
with
y. z 2 1z x |® |Ix y 2
N = o %o|  |%0 T | xo af (13)
Y 2¢ 27 %¢ T 27




The indices here signify partial differentiation (y; = /o0, etc.).
From geometrical inspection, the signs in formulas (12) can be chosen
such that the vector m = n;i + nyj + nzk points toward the interior,
that is, toward the region shielded from light rays by the elemental
surface itself.

The surface differential dS is given by
dS = N do drt . (14)

In integrating, do and dtv must be defined as positive increments, because
N and dS are positive.

All geometric quantities appearing in the force differential (10)
are known from expressions (12), (13), (14), including the cosine of the
local angle of incidence, as it is the scalar product

cos g¢=1n -+ 8 . (15)

The light direction s is of course a given unit vector.

Shadow boundaries will often exist on the surface; the integration
then may use only those parts of the o~ and t-intervals that describe the
illuminated regions. More detail on this can be found in Aero-Astrodynamics
Research Review No. 4.

Calculation of torques requires the determination of the center of
pressure for which a general method is set forth in the same paper.”®

By way of examples, the differential (10) will be integrated for
the sphere and the circular cone. The surfaces are considered non-trans-
parent to avoid the complications arising through backside reflection,
Furthermore, it will be assumed that the loss and smoothness coef-
ficients are constant over the entire surface; this means especially
that they are independent of the angle of incidence. Otherwise, numer-
ical integration is called for.

o
W. Heybey, "On Radiation Pressure and Its Effects on Satellite Motion,"
NASA TM X-53462, April 1966.




III, THE SPHERE

1f the sphere's center is at the origin, the parameters ¢ and T
can be chosen as the angles ¢ and 9 in the system of spherical coordin-
ates (figure 1). The representation (11) assumes the form

»
1]

<
[

N
(]

where R is the radius of

R sin 9§ cos @
R sin 9 sin @

R cos 9

the sphere, All points of the sphere are

accounted for if the parameters ¢ and 9§ move in the intervals

0=
0 s

The coordinate lines ¢ =

[N

9 = 2x
9 = n.

const. and § = const, are the circles of longi-:

tude and latitude, respectively.

Application of expressions (12) and (13) yields

n, = -sin 9 cos ¢, np = -sin J sin @, ns = -cos 9§

N = RZ sin 3.

Let the parallel light arrive directly from above:

§-=

Then

cos

-E'

a=n-<s=cos d.

The differential (10) becomes

d%F = P, R? sin 9§ d§ do [- k (1 - qK) cos § - 2K <%—§—ﬂ + q coszé>

. <; sin 9 cos @ + j sin 9 sin ¢ + K cos é)] . (16)



The upper half of the sphere only is illuminated. While one has
to integrate over the full natural interval O = ¢ = 2x, that of § must
be curtailed into 0 £ 9 = ®/2, because a shadow boundary exists at
d = n/2.

On integrating over ¢, the i- and j- constants of the force vanish,
so that

dF = -2x p, RZ sin 3§ [(l - qK) cos 9 + 2K’<?—%-1 +q cosz§> cos 6] k dd.

Integration with respect to 9 yields

F=-npoR2<1+2K!';J'>}_<_E-Fk. (17)

This force has the magnitude F and is in the direction -k of the incoming
light, If m is the mass of the sphere, the center of gravity moves with
the speed v = (F/m)t in the direction s (v = 0 for t = 0),

For symmetry reasons the line of attack coincides with the zenith-
nadir-line. Any sphere whose mass center is on that line experiences
no torque; a homogeneous sphere therefore cannot be set into rotatory
motion at all through the force exerted by the light, no matter from
which direction it arrives.

Suppose, however, that the sphere is divided by a plane, y = y¥*,
parallel to the (z,x)-plane such that left of it the mass density is
smaller than right of it (figure 3). The mass center, G, will then be
at a distance Vg > 0 on the y-axis. At t = 0, the sphere is subject to
a moment

M= (-dyg) ® (-FK) = iy F,

which seeks to rotate the body about an i-axis parallel through the mass
center and thus moves the geometric center, C, of the sphere through, say,
an angle A}y from its original seat at Q. The force (17) retains magni-
tude and direction; however, its arm GC is now

~1 cos Ay - ky sin Ay,
1y, cos &y - ky, sin Ay,

10




b, k

F at t=0
\
\
\
\
6 |
0 J = ¥
wo| "
1
/
!
/

Figure 3. Inhomogeneous Sphere
so that the moment becomes
M =‘Eyg F cos A} .

It is still in the i-direction, which is also the direction of a prin-
cipal axis of inertia through the mass center G. The motion will there-
fore be a mere rotation about this axis (no tumbling occurring). Let T
denote the moment of inertia relative to the axis of rotation,.

With a finite angle y, that is, at a given time t during the motion,

the absolute value of the moment, M = Yg F cos V, appears in the equa-
tion of motion

d2
EE% = A cos ¥

where A = ygF/T is a positive quantity. Putting dy/dt = w, this equa-
tion may be written as

11



4 2= ¥
at W T A g cos v

so that a first integral, with ¢ = 0 and w = 0 for t = 0, becomes

w= *t~N2A sin ¥ =g—i{

Further integration shows t to be an elliptic integral similar to the
integral that occurs with the motion of a pendulum. In writing the
solution down let it be recalled that the Jacobian elliptic function
sinus amplitudinis (sn z) has the real period 4K and takes on the
values 0,1,0,-1 for z = 0,K,2K,3K, respectively, With its aid the
dependence of the angle { on time may be given as

sn? A t)

sin ¢ =

2 - sn® (A t)

The angular velocity then becomes

\‘1;=w=/ 24 sn WA t).
2 - sn® (A t)

The modulus characteristic for the function here is k = 1/N2, so that

K = 1.8541,

as can be found from a table of the complete elliptic integrals.

Now, at t = 0, §y = 0 and w = 0. As time proceeds, the angular
velocity attains positive values up to a maximum N2A at ¥ = 90°
WA t = K), when the sphere's original right-hand extremity is now on
top and the torque M has become zero (the mass center being on the line
of attack; cos { = 0). 1Inertia carries the motion on; a torque then
appears in the negative i-direction and causes deceleration. The
angular velocity decreases to the value w= 0 at ¥ = 180° WA t = 2K),

12




where the ''negative" torque has its greatest absolute value and succeeds
in reverting the sign of the angular velocity. A return half-cycle
follows which takes the velocity through negative values, until at

A t = 4K the initial position and velocity are attained a second time.

Since the quantity

y
-8 . 2 l1-q
A T npoR<1+2/< 3>

can be expected to be very small, especially with appreciable sphere
mass, this swinging motion will often be slow. If, for example, Mdi
is of the order 10-° 1/sec, the time needed to accomplish a full cycle
would be 4K x 10° sec or somewhat more than 8 days.

In addition, other small torques may be operative (through micro-
meteoric impact, the gravity gradient, aerodynamic forces) which may
lead to a slow gyroscopic (tumbling) motion after all.

If the force has the general direction s (instead of -k), we may
introduce the k-direction in such a way that s is in the (y,z)-plane,
It is then not hard to show that qualitatively the motion is the same
as before (assuming again that { = w = 0 for t = 0). In the exceptional
cases where s = £ j, no rotatory motion at all is initiated for lack of
a moment at t = 0,

Expression (17) shows that the force takes on a particularly simple
form for a totally absorbing surface (kK = 0). This is to be expected,
since the sphere then moves under the sole impact of incident light,
More remarkable is the fact that the same result obtains if the sur-
face is a perfect mirror (q = 1, kK arbitrary). Quite regardless of
what part of the energy goes into the reflected light, the force is
always due to incidence alone., One can indeed see from expression (16)
that the vertical (k-) components of the forces d®F_ cancel at surface
points that lie 45° apart on a meridian., The lateral components cancel
at points 180° apart on a circle of latitude. The net force exerted
through specular reflection is therefore zero.

13



IV. THE CIRCULAR CONE

In figure 4 it is assumed that the light, arriving from the leff
and back, determines the (x,y)-plane with the cone (y-) axis. 1Its

Z, k
— L
o \
EE—— r\
T \
‘3 |
\ __.._‘2 __________ : -
s | v,
!
/
L/

Figure 4. Cone Geometry

direction is then given by the unit vector

s =1isin 3+ jcos B

where B is counted a positive angle (negative values would assign a
backward component to the light direction with no essential consequences
for the description). Let us consider the case of full illumination:

™
A
e

The parametric representation of the curved surface may be written as

X = Ro sin 7
y = Lo

Ro cos 7T

N
I

14




where

0=s0s1, O0=1=2n

are the natural intervals needed for full coverage of the surface. The
coordinate lines o = const., 7 = const. are circles normal to the cone
axis and the generating lines, respectively.

Since
y z_ x_| X_y
g “co . ¢ o og’a
= -LRo sin T, = R%0, = -LRo cos T,
z z X
i 27 T X¢ L

it follows from the general expressions (13), (12) and (15) that

ny = -sin 7 cos w, Ny = sin w, Nz = -COS T COS W
cos O = -sin T cos wsin B + sin w cos B.

With these results and the area differential (14) the force element
(10) becomes

po RLo

d3%F = ——
- COos W

do dr-{(l - gk)(d sin B+ j cos B)(-sin T cos w sin B

+ sin w cos B) + 2k(-i sin 7 cos w+ j sin w - k cos 7 cos w)

[l_é_ﬂ + q(-sin 7 cos w sin B + sin w cos B)Z} }"

15



In integrating over the natural o-interval the factor 1/2 appears.
Since the parameter 7 also moves in its full interval 0 = 7 £ 2x (no
shadow boundary being admitted), all t-quadratures leading to trigono-
metric functions alone result in zero. The final outcome is less
involved than might have been expected:

F = P, Rz-{? sin B cos B (1 + gk cos 2w)

+i [cosaﬁ + Z—%—& K - kq (sin®B sin®w + 2 cos?3p cosgw)] }-. (18)

The cone length L appearing in the force differential has been replaced
here by R cotg w.

It is seen that with q = 1, expression (18) still contains terms
involving the loss coefficient Kk and that therefore, other than with
the sphere, the force continues to depend on the quality of the reflec-
tion, It is not equal to the force through incidence alone:

F, = RZ cos B (i sin B+ j cos B) (19)

except in the trivial case where there is no reflection (kK = 0). Its
absolute value is often smaller than that of F;» especially with slender
cones, with which the force through specular reflection has a strong
component opposite to the axial component of the incident force. Con-
sider zero incidence where

while, by expression (18)

|E| = mp, RZ [1 + K <?—§Fﬂ - 2q coszé>] .

When

cosZw > 2—6+J'
q

|lF| < |§i|. In the ideal case q = 1 the condition becomes w < 45°.

16




Clearly, reflection not always strengthens the force as one might
be led to believe by incorrectly generalizing flat plate results.

Fairly extended calculation is necessary to locate the center of
pressure. It is found at

4K
1+ 3

* = pk = =
X z 0, y* =1L 1 +gK cos 2w °

Its position does not depend on the angle B, but it is variable with
the cone angle. When the cone length is fixed, it moves away from
the tip with increasing base radius; if w reaches a value = 35°15'
(cos 2w = 1/3), it resides at base center.

For a homogeneous cone the mass center is at

The stability condition, y* > Yg> tells that most cones are stable
except the slender ones for which

LS
1+ 3

Slw

< (20)

1 + 2k cos 2w

As long as qk < 0,6, the cone motion is stable, in particular with a
non-reflecting surface (K = 0) and with completely diffuse reflection
(g = 0). 1Ideal specular reflection (kK = q = 1) renders a cone unstable
provided its tip angle is sufficiently small (sin w < 1/3, w <19.5°).

The torque about the center of pressure is found from
L’I.=-J'(Yg'>'*)XE

which expression gives

M=, RZL sin B cos B [% (1 + gk cos 2w) - <} + %5)] . (21)

17



This formula, as the force expression (18), is valid only with a fully
illuminated cone, i.e., for B = w. Once the angle B is inside this
region, it will remain there provided the motion is stable. Otherwise,
B will eventually exceed w, The much more complicated expressions which
arise with the presence of a shadow boundary on the cone simplify for

a non-reflecting surface; one finds that, with g 2 @, the motion is
stable here as long as tan w cotg B > 0.17.

In the case of the Apollo capsule where w =~ 33°, this complication
is not likely to occur¥*, although it is not a homogeneous body. Once
the tip points in the general direction of the sun so that the conical
part of the surface is entirely exposed to sunlight, the torque pro-
vided by the latter should tend to align the cone axis with light direc-
tion. It would be expected that the same tendency prevails if a narrow
triangular shadow zone exists on the surface. However, with a wider
such zone, a detailed mathematical investigation is called for, which
also would have to allow for the forces that attack the illuminated
parts of the base cap.

In order to study the behavior of the light force acting on a fully
illuminated cone,a computer program** was run which assumed lossless
reflection (k = 1). The angle w was taken as 33° (Apollo capsule),

The remaining parameters then are the smoothness coefficient q and the
angle B (2 w) of overall incidence., The results can be summarized as
follows:

(a) B = const., The force increases with the smoothness
coefficient decreasing from 1 to zero (in the approximate
ratios 1:3, 3:5 at g = 0°, p= 33°), Its inclination
towards the cone axis decreases (except at p = 0 where it
is always zero). The maximum decrease occurs at g = 33°
(from 45,75° to 18.44°). 1In short, increasing diffusivity
renders the force stronger and less inclined towards the
cone axis,

(b) q = const, The inclination of the force increases with
B (from O to 18.44° at q = 0, from O to 45.75° at q = 1),
Its magnitude decreases if q < 0.5 (in the ratio 7:6 for
g = 0); it increases if q > 0.5 (in the ratio 2:3 for
q 1). With q = 0.5 there is an insignificant force
maximum at B =~ 25°, the whole variation amounting to less
than 1 percent in the full range 0 £ B £ w.

There is no value of gk (£ 1) that would satisfy condition (20), as
cos 2w = 0.4,

*% .
Set up by James E. Mabry.
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With the opposite extreme of Kk (k = 0), the behavior of the force
does not depend on w and is directly seen from expression (19)., Its
angle with the cone axis is always B, and its absolute value decreases
as p moves from 0° to w,

If B exceeds w, expression (19) for w = 0 must be replaced by

T+ 27
F E.Ei =P, Rz(i sin B+ j cos B) E——TT—E'COS B + sin B cotg w cos TS]

where the relation
sin Ty = tg w cotg B

defines the two straight shadow boundaries 7 = 715 and 7 = x - 21g.

In the limiting cases of the half and fully illuminated cone
(B = /2, B= w),one has

= RZ cot
po cotg w

A P,

= 7 RZ cos w.

It is seen that if sin w < 1/x the force at B = n/2 is stronger than
that at B = w; that is, with sufficiently slender cones the decrease

of the force with increasing B will not continue indefinitely up to

B = s/2, It can be shown that in such circumstances, the force goes
through a minimum followed by a maximum and ends up decreasing at

B = n/2. In the special case where the force magnitude here is iden-
tical with that at B = w (sin w= 1/n, w = 17.5°), the minimum was found
at B~ 19.5°, the maximum at B ~ 58°,

With w = 33°, the magnitude of the force on a non-reflecting cone

decreases through the entire p-interval from = 0 to B = n/2, From
unity at B = 0 it is down to 0.84 at B = w, and to 0.49 at B8 = x/2,

19



V. CONCLUDING REMARKS

Diffuse re-emission was thought in the foregoing to be governed by
Lambert's cosine law. This law furnished the model from which to cal-
culate the overall diffusion force acting on an elemental surface. From
the intensities re-emitted in the several directions, corresponding light
forces were determined and added up vectorially,

Other approaches to the problem of diffuse reflectivity can be
imagined.

As an example, one may assume that an infinitesimal half-sphere
erected over the elemental surface is uniformly illuminated by the
diffusely reflected light. Contrary to Lambert's rule, its intens-
ity then would be the same in all directions. This entails that
a greater part than before of the re-emitted energy is caught up in
cancelling "stresses" parallel to the elemental surface. Computation
shows that the factor 2/3 in expressions (4) and (9) is to be replaced
by 1/2, so that instead of (1 ~ q)/3 in the fundamental expression (10)
one has to write (1 - q)/é&.

In both these approaches fictitious model forces are treated as if
they were actual forces; the factors 2/3 and 1/2 are uncertain to this
extent., From the random distribution of the surface irregularities one
would conclude that the integrated force actually exerted on the sur-
face element in diffuse reflection should be essentially in the direc-
tion of the interior surface normal (as in fact it turned out to be
with the two models). Without going into any more detail, one might
argue that the amount of energy not reflected specularly is reflected
diffusely, thus converting the factor 2/3 in expression (4) into unity
and the term (1 - q)/3 into (1 - q)/2.

From all this it would seem that the "diffusion" portion of the
force differential (10) is likely to be proportional to a factor between
(1L - q)/2 and (1 - q)/4.

To illustrate the differences involved the forces arising with
K =1 on the fully illuminated cone with half-angle w = 33° were com-
puted using the largest factor (1 - q)/2 in order to compare them with
those previously found for (I - q)/3. In the worst case (q = 0; exclus-
ively diffuse reflection) the force magnitudes are multiplied by nearly
the same factor 1.2 in the entire range 0 £ = w, whereas the force
inclinations toward the cone axis decrease by a rather constant factor
of again =~ 1.2. A tendency of this kind is in keeping with what an
earlier result should suggest to expect from increasing diffusivity;
the force on the cone becomes stronger and less inclined. TIts moment
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about the origin, however, and thus the center of pressure, are inde-
pendent of speculations on the magnitude of the diffusion part, because
with full illumination the latter's line of attack is the cone axis,
The diffusion torque therefore is zero irrespective of the choice of

n in (1 - q)/n and, by the way, of all other characteristic quantities
such R, L, q, K.
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